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ABSTRACT 

We introduce a generic method based on the Discrete Event System Specification (DEVS) formalism to 

model and simulate a Controller Area Network (CAN) port connected to a network with other nodes. The 

models are tested in software and then implemented in hardware. We show a streamlined development 

process to model, simulate, and test the use of the CAN network for any general application using the 

Cadmium simulation environment for software simulations and executing the models on hardware using 

Real-Time (RT-) DEVS. With this method, different scenarios can be tested in the modeling and simulation 

phase before the models are ported onto embedded hardware. 

Keywords: CAN protocol, DEVS, RT-DEVS. 

1 INTRODUCTION 

The Controller Area Network (CAN) protocol is used extensively in industrial applications and is now 

finding use in other applications like automotive, aerospace, and smart buildings. CAN uses a broadcast-

based protocol that allows all the nodes to access the packets exchanged on the network. This allows simpler 

wiring as all the nodes can be connected to a single bus (ISO 2016). Over the years, the applications moved 

from factory floors to automotive. The number of sensors in a vehicle has increased tremendously and the 

CAN network has become the de facto standard for vehicle manufacturers to use and allow communication 

between the nodes in the vehicle (ISO 1993).  

The CAN protocol is simple and flexible. It allows the creation of higher-layer protocols that can be tailored 

to specific use cases. This has led to its adoption in other industries; for instance, UAVCAN, which was 

designed to be used in Unmanned Aerial Vehicles (UAV) where fault-tolerance and real-time constraints 

are prioritized (UAVCAN 2021). In addition, the CAN protocol suffers from security issues due to its 

simple structure. Having a general method to model and simulate CAN ports and nodes connected to the 

CAN network will allow for easier design and testing of new applications or security features. 

Our goal is to advance with new methods for studying CAN nodes, defining a functional communication 

model for distributed systems and realistic data under application conditions including the number of nodes, 

communication frequency, error rate, etc. We want to provide reusable models to facilitate the study of a 
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functional node on a CAN network. Our general approach to modeling the CAN port will allow designers 

and testers to apply the method to any application that uses CAN. Testing the node response to messages 

from the network can help us point out potential flaws within the control application.  

The CAN architecture supports a modular definition of nodes which allows us to model and test individual 

nodes and then combine these models to test the final system where we can check if it works as expected. 

Modeling methods supporting a modular structure, such as the Discrete Event System Specification (DEVS, 

Zeigler 1989), can help with this task. We used DEVS for modeling the CAN standard and built an RT-

DEVS-based CAN port model to demonstrate that nodes can be independently tested to study behavior in 

a network. The proposed CAN port model allows us to simulate the behavior of a node and test it on a 

hardware surrogate while it is part of a larger network. The inherent modular nature of DEVS allows this 

model to be linked to other atomic models and become a part of a larger coupled model. In the final step, 

models are ported over to hardware using RT-DEVS (Hong et al. 1997). 

We focus on modeling at the application layer level (i.e, the physical layer is not modeled), showing how 

to use our method to design, simulate and test the applications. The model is generic to allow it to be used 

multiple times including on different nodes in the same network or even the same node as can be the case 

if a node has multiple CAN ports. By doing this, we SJPW the use of DEVS and RT-DEVS as viable 

modeling and simulation methodology for CAN that is formally defined, modular, repeatable, and reusable. 

DEVS can model any application and therefore complete simulation models can be built allowing for 

extensive testing of a CAN application during production before deployment.  

The rest of the paper is organized as follows. Section II describes the background and related work to our 

proposed methodology and the CAN architecture. In Section III and IV, we discuss the methodology, 

simulation, and experimental results, and finally, in section V we offer a conclusion. 

2 BACKGROUND 

The CAN network is a broadcast-based CSMA/RD network. The standard frame has an identifier field that 

allows the nodes to identify and filter the messages they need. At present, the most widely used version of 

the CAN protocol is version 2.0 (ISO 2015). The CAN protocol can operate under different data rates (CAN 

2.0 has a limit of 1 Mbit/s and a maximum 8 bytes/frame payload), and communication speed is limited by 

the distance between two nodes (at greater distances lower data rates must be used). CAN Flexible Data-

rate (FD) allows for higher bit rates and payloads, and the CAN 2.0 expanded identifier field extends the 

possible nodes to over 500 million. Simultaneously, this introduces larger overhead per frame, which can 

be considerable at lower data frame sizes and becomes negligible at larger data frames (Rovira Más, Zhang, 

and Hansen 2010). The payload for data frames can be between 0-8 bytes (or 0-64 bytes for CAN FD) and 

a CRC field ensures the integrity of the data. 

Different efforts have addressed the CAN protocol in terms of network characteristics and behaviors, 

security, and expanding its application domain. In (Ziermann et al. 2012) an FPGA-based testbed was 

developed to analyze the timing behavior of CAN networks to help identify time-critical parameters. In 

(Ziermann, Salcic, and Teich 2012), a CAN network was specified as a collection of streams from different 

nodes. For the simulation of the physical layer, (Prodanov, Valle, and Buzas 2009) used analytical methods 

to design a transceiver model using VHDL-AMS. Their model can be used to design and analyze hardware 

electrical characteristics. In (Zdeněk and Jiří 2013) the authors designed a spice-based library to allow the 

study of electrical characteristics of a physical layer of CAN in presence of Electrostatic Discharge.  

Owing to the vulnerability of the CAN bus to network security issues (broadcast without authentication), 

there has been considerable research, including a central authentication scheme to identify nodes securely 

(Groza et al. 2012; Bella et al. 2019; Groza and Murvay 2018) or using methods for intrusion detection. In 

(Young et al. 2019) signature-based and anomaly-based methods for intrusion detection are discussed. 
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CAN has been used in varied domains. In (Ortiz et al. 2011), an HVAC and alarm automation system was 

implemented using the CAN bus due to its low cost and long range. In (Shweta, Mukesh, and Jagdish 2011) 

a lighting control system was implemented using the CAN bus as the backbone network. 

The CAN bus allows the system designer to choose how to represent data and use built-in arbitration to 

assign priority to each message. Identifiers are not assigned to CAN ports, but rather to each message. The 

designer can choose the id for each message, allowing the connection of multiple transducers to a single 

node and then send out their messages under a different id (Kurachi et al. 2014; Groza et al. 2012). 

There are several commercially available tools to simulate CAN networks. CANoe is a widely used tool 

designed to allow for System Under Test (SUT) in which a hardware or software component can be 

simulated with test conditions without the risk of damaging components, and CANalyser can be used for 

studying physical networks (Vector Informatik 2021). These tools are primarily designed for automotive 

applications, Electronic Control Unit (ECU - the various embedded subsystems found in automobiles), and 

ECU network simulations. The tool can simulate all the components and their interactions with a CAN 

network on the datalink and application layers. CANoe has been used to build a test environment for vehicle 

body simulations (Zhou, Li, and Hou 2008), to test for vulnerabilities by hacking into it (Pimple 2018), and, 

using CARLA (an open-source simulator based on Unreal Engine), to detect intrusions in the network for 

automotive applications (Casillo et al. 2019). These tools have limitations; for example, CANalyser does 

not simulate a CAN network and is only used to stimulate and analyze the physical ECU CAN network for 

diagnostics purposes. As CANoe is heavily focused on automotive applications, adapting the software for 

use in other areas will require making custom Functional Mockup Units (FMU) based on Functional 

Mockup Interface (FMI). Both CANoe and CANalyzer are commercial products. 

Various research efforts used formal methods to improve the testing of different aspects of CAN. As an 

example, (Wang et al. 2020) proposed to model a gateway using timed automata. Their purpose was to test 

the correctness of message transmission at various rates. The real-time characteristics of the models were 

verified using Uppaal, a model checker used to verify timed automata. Although formal methods set the 

foundation to test more advanced scenarios, most methods in the literature have limited use cases and cannot 

be applied to design a working system relying on a CAN bus with multiple nodes. This raises the question 

of the potential for other formal techniques to create full-fledged applications using the CAN network. One 

method that has been applied to similar protocols is RT-DEVS, based on the DEVS formalism. DEVS 

breaks down complex systems into atomic and coupled models where atomic model specifies the behavior 

and coupled model specifies the structure. DEVS provides a rich structural representation of the 

components and allows to explicitly specify timing, making it easy to adapt to real-time systems (Wainer 

2009). RT-CADMIUM (Belloli et al. 2019; Earle et al. 2020) implements RT-DEVS on Linux as well as 

bare hardware using the Mbed library. The tool provides a simple workflow where the models can be 

defined in DEVS, and the tool will compile and flash the models to firmware. Mbed supports a wide range 

of hardware, and the applications can be thus tailored to a variety of scenarios. RT-CADMIUM can also 

encapsulate Mbed native drivers for protocols. This then allows the model designer to let Mbed take care 

of low-level details of the protocol (acknowledgments, arbitration), and allows them to focus on modeling 

sending, and receiving messages. RT-CADMIUM and Mbed are open-source libraries. 

To adapt DEVS to simulating a CAN port, coupled models can be compiled to be flashed onto hardware 

nodes where we can run tests individually and combined in a bigger network to check for proper working. 

Each node can be tested individually and independently from the network while still and we can be 

reasonably certain that it will function as desired when added to a network. For testing on hardware, we 

designed the CAN network using a CAN controller and a CAN transceiver IC. The transceiver IC converts 

the digital serial inputs from the CAN controller into physical voltage levels. We used an MCP2551 

transceiver IC as it has low RFI emissions and high noise immunity while supporting up to 1 Mbit/s 

communication. The CAN controller is a NUCLEO-F207ZG board running Mbed. The board contains two 

CAN ports and large ROM and SRAM allowing complex models to be flashed onto the system. 
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3 DEFINING THE CAN PORT 

By implementing the CAN port on the application level and using RT-DEVS and using the CADMIUM 

tool we can design complete applications and simulate them on both software and hardware. The models 

can be flashed unto hardware as is and therefore we have parity between models.  

To test the models, we use three hardware setups that demonstrate that this method of modeling CAN port 

can result in creating a fully functioning system that will work when connected in a bigger setup. Each of 

the setups tests a specific use of the CAN port and comprise of testing the ability of a node to send CAN 

message to the network, receive CAN message, and both send and receive CAN messages. The ability to 

both receive and send messages while polling a line introduces some complications that we will discuss 

and offer a solution in this section. The controller is coupled in slightly different ways depending on the 

simulation type, whether it’s the hardware or software simulation.  

3.1 CAN Controller Model 

The CAN controller Model is responsible for reading messages from the CAN network and passing the 

messages to the node. The model is defined as a DEVS atomic model. A reduced formal definition of the 

atomic model that includes the input/output ports and states is presented as follows: 

𝐶𝑎𝑛 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = <  𝑋, 𝑌, 𝑆, 𝛿_𝑖𝑛𝑡, 𝛿_𝑒𝑥𝑡, 𝜆. 𝑡𝑎 > 
𝑋 =  { 𝑅𝑥, 𝐷𝑎𝑡𝑎𝐼𝑛 } 
𝑌 = { 𝑇𝑥, 𝐷𝑎𝑡𝑎𝑂𝑢𝑡} 
𝑆 = { 𝑠𝑡𝑎𝑡𝑒 𝜖 {𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡, 𝑟𝑒𝑐𝑖𝑒𝑣𝑒, 𝑚𝑜𝑑𝑒, 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑑𝑜𝑛𝑒}}  

The model uses two input and output ports. The input port ‘Rx’ is used to receive the messages from the 

CAN network and ‘DataIn’ is used to receive inputs from the node to be later transmitted to the network. 

Similarly, the output port ‘Tx’ is used to send messages to the CAN network and ‘DataOut’ is used to send 

decoded messages to the node from the CAN network. The first two states ‘transmit’ and ‘receive’ 

determine whether the model needs to send a CAN message to the network or has received a CAN message 

from the network respectively. It should be noted that both ‘transmit’ and ‘receive’ can be true at the same 

time. In this case, the output function will send a CAN message to the network and a message to the node.  

The state ‘mode’ determines the function of the CAN controller in this node. The three modes are transmit-

only, read-only, and read-transmit. The transmit-only mode reads inputs from the node through the ‘DataIn’ 

port and then sends the received messages through the ‘Tx’ port in the form of a CANMessage. Since the 

port is only supposed to transmit messages, the model can be passivated after the CANMessage is sent. The 

controller then waits until an input is received through the ‘DataIn’ port to send another CAN message. The 

read-only mode waits for the next input from the network through the ‘Rx’ port by continuously polling the 

line at fixed intervals. If an input is received the controller decodes the received message, which is then 

sent to the node through the ‘DataOut’ port. Finally, the read-transmit mode both reads from the network 

and transmits messages to the network. As before the transmitting data works by the triggering of an 

external transition through the ‘DataIn’ port which sets the ‘transmit’ state to true and then transmits the 

data to the CAN network. The controller polls the network for new messages; when it receives a message, 

it transfers the message using the ‘DataOut’ port and sets the ‘internaldone’ state to false, passivates the 

controller and waits (for the node to process the data it has received and prepare any data it wants to send). 

Polling the line takes computing time away from the rest of the node and the simulation proceeds slowly or 

not at all depending on the polling rate. By passivating the controller, the rest of the node can have all the 

computing resources quickly process the data and generate an output for the controller to send. The 

‘internaldone’ state then specifies if the node has completed its processing for a received CANMessage. 

The model converts the message from type CANMessage as defined in Mbed CAN API to a user-defined 

internal message. In our case, the user internal message retains the ID and data of the message and strips 

the remaining components. The ID is retained so that the models connected to the CAN controller can filter 
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the messages. The modeler can specify a custom internal message that retains more or less of the received 

CANMessage. It is important to note the CAN controller does not set the ID of the message. Neither does 

it strip ID information from the message. This allows the other atomic models to decide what ID they will 

use and how will they react to different ID messages and the information contained in them. 

We couple the controller in different arrangements depending on if the simulation is to be done in software 

or on hardware. For a software simulation, we use the coupling as shown in Figure 1.  

                       

Figure 1: Coupling (a) for software simulation (b) Hardware deployment 

In Figure 1a, the top model shows the coupling of the CAN controller atomic with the rest of the 

‘Application’ and the coupled model Node. The controller has an External Input Coupling with ‘Tx’ port 

and an External Output Coupling with the ‘Rx’ port. The ‘Application’ here represents any coupled or 

atomic model the node is supposed to do and it communicates with the CAN controller and by extension 

the network using the Internal Couplings (ICs) with the ‘DataOut’ and ‘DataIn’ port of the controller. Figure 

1b shows the couplings when deployed in hardware. The only difference is the missing ‘Rx’ port. This is 

because reading the network is done continuously by setting the time advance to zero and using the internal 

transition function to read the network. We poll the network using the internal transition, and the model 

still uses the ‘Rx’ model of the physical CAN port, otherwise, it would not be able to receive messages 

from the network. The coupled model on the bottom shows two nodes, ‘Node 1’ and ‘Node 2’ connected 

by coupling the ‘Tx’ port of one with the ‘Rx’ port of the other and vice versa. We can connect multiple 

Nodes this way. In hardware, the lines connecting the models are dashed, because the nodes are connected 

over a physical CAN network and are not directly coupled. Each node is a coupled model on a separate 

physical board connected to the network. We can introduce a separate model between the nodes, this is 

useful in cases where we want to test the system under conditions like delay or packet loss. In this paper, 

we focus on demonstrating the use of DEVS and RT-DEVS for simulating the CAN port. 

3.2 Hardware Experimental Setup  

We built an experimental setup with three boards to form nodes and exchange information between them. 

The three boards represent a console unit, a motor unit, and the accelerator and brake unit. The nodes are 

connected over the CAN network. The boards have two pins (TX and RX) for the CAN port. TX is used to 

send data to the CAN transceiver; RX receives data from the transceiver. Both pins are digital outputs and 

serial. TX and RX are connected to the respective pins on the MCP2551 IC. The two wires leaving the IC 

are CANH and CANL wires and together they carry each message; they have differential voltages applied 

to them so even though they may be two wires they still carry data serially. The three nodes are connected 

on a signal bus and therefore receive all communications on the network. This method can still be used to 

model situations where a node is connected to two or more CAN networks that are separated. For example, 

we can create a scenario where the network is divided into two networks: one for infotainment and climate 

control and the other for critical components. We can use one board with its two ports to connect to the 

different busses and use it without changing the port models. The complete system is shown in Figure 2. 

The system is made up of the Console Unit, the Motor unit, and the Accelerator & Brake unit. 
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Figure 2. Three nodes and connections between them 

The console unit is used to process and display the information being passed through the CAN bus from 

the other units. The motor unit simulates a motor operating in a vehicle and simulates the effects of 

acceleration, drag, and braking forces. The accelerator and brake unit converts analog inputs to CAN 

messages and passes them on to the motor unit. It takes analog inputs from analog pins and can be changed 

using a potentiometer. The inputs have separate ids and are sent over the CAN network, allowing the motor 

unit to receive and at the same time distinguish between the two inputs. The motor unit uses this information 

to compute the speed and send this information back over the CAN network. 

4 SIMULATING THE CAN NETWORK 

In this section, we discuss the simulation scenarios and test results of the simulations run in CADMIUM 

and real-time execution on RT-CADMIUM. The tests simulate three units of an automobile and each unit 

tests one aspect of the CAN port as discussed in the previous section. The three units are the Acceleration 

& Brake Unit, the Motor Unit, and the Console Unit. The Acceleration and Brake Unit test the ability to 

send messages over the network. The Brake Unit converts inputs to CANMessages and passes them onto 

the CAN network without receiving anything in return. The Motor unit tests the ability to update the 

parameters of the Motor unit based on inputs from the network consisting of acceleration and braking. The 

motor also sends the speed of the vehicle to the network in periodic intervals. The Console unit receives 

messages from the other nodes about the current braking, acceleration, and motor speed from the network 

and displays it to the user. In this manner, each of the hardware setups tests all three of the scenarios a CAN 

port and a node should be expected to handle effectively and correctly.  

4.1 Experimental Setup 

Figure 3 shows the couplings of the experimental setup, including the couplings of the three units. The 

Accelerator Brake CAN coupled model takes analog inputs and passes them into the network using the 

CAN controller. The inputs are taken from analog pins of the board using ‘AnalogIn’ model and passed 

onto ‘float_to_int’ model that converts the floating-point values to unsigned bytes as required by the CAN 

controller and adds id to the message. The Console Coupled model displays the values of the motors' speed, 

acceleration input, and brake input as received from the CAN network using the ‘Display’ atomic model. 

In the hardware setup, the display is an LCD connected to the board. The Display atomic model acts as a 

wrapper for the TextLCD library. The model deciphers the message source from the ids. The text is 

preformatted and only the values of the relevant fields are changed to express an update. Finally, the Motor 

Coupled model receives acceleration and braking input from the CAN network and sends speed information 

to the network. To simulate motion, the model needs to increase its velocity in increments when an 

accelerating input is given. Slow down when braking or decelerating input is given. Removing the 

accelerating input should cause the velocity to decrease over time and reach zero after a while. We, 

therefore, need an iterative equation. 
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Figure 3: Coupled model showing the couplings of the experimental setup for the three units. 

When a vehicle is in motion it is affected by a drag force due to the presence of air resistance. We use the 

drag force equation to model air resistance, R = 0.5*p*v^2*Cd*A where the symbols p, v, Cd, and A stand 

for the density of the fluid, velocity of the object, drag coefficient, and cross-sectional area, respectively. 

In this model, we simplify the drag equation by combining it into one term and keeping the velocity of the 

vehicle as the only variable. The drag force then becomes 0.5*v^2*w where w is the drag weight. We add 

the acceleration and braking inputs to the equations by considering them as weighted forces applied to the 

vehicle, Acceleration is added, while braking force is subtracted. The final iterative equation becomes 

v(t+1) = v(t) + (w1*a – w2*b- v^2*w). The weights have been set to w1 = 0.25, w2 = 0.5 and w = 0.01. 

The accelerating input is weighted such that more acceleration is needed to overcome the force of friction 

generated by the brakes. The drag coefficient is dependent on the previous velocity. A constant velocity is 

achieved over time as drag force equals the acceleration force. 

4.2 Simulation Scenarios 

Each node was individually tested; however, for the sake of brevity, we show the final simulation scenarios 

where the nodes are connected as shown in Figure 3. The scenarios involve sending an accelerating input 

to the motor, followed by applying a braking input, then removing the braking input, and finally removing 

the accelerating input. The purpose is to show that the inputs are transferred across the network and the 

motor acts as we designed (that is, the motor speeds up incrementally if an accelerating input is applied, 

slows down incrementally if a decelerating input is applied, and slows down if an accelerating input is 

removed). Table 1 shows the output from the acceleration unit when it is increased from minimum to max. 

This scenario also tests the float_to_internal atomic models as they are used in the simulation as well. The 

model receives inputs from AnalogIn and passes them on to the float_to_internal atomic model which 

passes them out to the CAN atomic model and then the CAN bus. Table 1 shows some of the logs when the 

analog inputs are increased from 0.0 to 1.0 in increments of 0.1.  

Table 1. Simulation output 

Analog 

Input 

Float_to_internal CAN1 TX output 

ID Data ID Data 

0 1100 0 1100 0 

0.1 1100 25 1100 25 

0.5 1100 127 1100 127 

0.9 1100 229 1100 229 

1.0 1100 255 1100 255 
 

As discussed in Section 4.1, the analog inputs are converted, by the float_to_internal into bytes and add an 

id to the message. This is passed to the CAN controller model using the ‘DataIn’ port, where it is sent 
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through the ‘Tx’ output port to the network. This input reaches the motor unit, and we log the data received 

at the input and the resulting speed of the motor. The graph in Figure 4a, shows the speed of the motor as a 

result of inputs from the acceleration and braking units.   

   

Figure 4. Motor speed output graph. (a) software simulation (b) hardware exection. 

We can see that when the accelerating input is applied, the motor reaches maximum speed. When braking 

is applied, the speed falls incrementally. We then remove the braking input and see that the speed increases 

back to its top speed. Finally, the accelerating input is removed, and we can see that the speed falls due to 

drag force until eventually reaching zero. 

If we analyze the simulation log files, we can see that the motor receives the input, calculates the speed, 

and then return the message to the CAN controller for further transmission on the CAN bus. Since the CAN 

controller is in mode 2 i.e read-transmit the CAN controller receives a message and then stops transmitting 

until the other model returns data through the DataIn port, in this case, the motor atomic model. The first 

few outputs from the logs are shown in Table 2 with extra information removed.  

Table 2. Selected motor log outputs 

Input CAN DataOUT Motor Output CAN TX 

ID Data ID Data ID Data ID Data 

1200 255 1200 255 
1300 0 1300 0 

1300 63 1300 63 

 

The ID 1200 represents an accelerating input. The ID 1300 is reserved for the Motor data representing 

speed. The input for acceleration is applied once and then received by the CAN port, the motor upon 

receiving the input starts calculating its speed iteratively. Hence why there is only one entry for the Input 

and CAN DataOut and multiple entries for Motor Output and CAN TX. 

4.3  Deployment on the target hardware platform 

The hardware execution was carried out using the setup shown in Figure 2. The difference is as discussed 

in Section 3.1 each node is on a separate embedded board with its own CAN port and connected to a real 

network. We record the log outputs over serial USB into a computer. Three log files were obtained from 

each of the nodes: Accelerator and Brake unit, Console/Display unit, and Motor unit. Analyzing the log file 

from the accelerator unit we can see the log shows the input from the two analog pins and the outputs from 

the float_to_internal and CAN port. However, we do not see any input from the CAN port, as it should be, 

as this node is in transmit-only mode. The log for the CAN port message does not show any values as in 

this case it uses the Mbed OS representation of CANMessage and the logger cannot decipher the message. 

Table 3 shows some of the outputs from this node. Table 3 represents twisting the potentiometer to a 



Jamal, Boi-Ukeme, and Wainer 

 

minimum resistance for the accelerator pin and then doing the same for the brake analog potentiometer. 

The analog input shows the intensity of analog input at the pin while the other column shows the converted 

values. If we look at entries 4 and 5, we can see that 0.98 gives us 25, which is approximately 1/10 of 1.0 

and 255. In the same manner, the 0.610 is converted to 155 which is approximately 60% of 1.0 and 255 so 

we can conclude this node is working as intended. 

Table 3. Logged data from Accelerator and Brake node. 

Analog Input 

Acceleration 

Acceleration Output Analog Input 

Brake 

Brake Output 

ID Data ID Data 

0.165079 1200 42 0 1100 0 

1 1200 255 0.0981685 1100 25 

1 1200 255 0.999512 1100 254 

 

Moving onto the motor node log files (a small, selected subset is shown in Table 4). We can see the inputs 

from the accelerator and brake node are successfully reaching the node over the CAN bus. The motor is 

calculating the speed and then transmits the values over the CAN bus.  

Table 4. Log output of the motor node.  

Motor model Output CAN DataOut 

ID Data ID Data 

1300 0 1200 254 

1300 62 1100 0 

1300 105 1200 254 

1300 112 1200 23 

1300 45 1200 0 

 

We can see the CAN port is receiving both accelerating and braking inputs. In this subset, the braking input 

is set to zero while the accelerating input is set to max and then set to zero again. The motor calculates this 

speed and sends it back to the CAN port which transmits it with ID 1300. Due to limitations of the buffer 

size of the logging software a complete log of the output of the motor was not achieved. However, if we 

plot the data that we have, as shown in Figure 4b. We can see the plot resembles what we obtained in Figure 

4a for maximum acceleration and then removing the accelerating input. 

Finally, we move to the console unit logs. This node receives inputs from the other two nodes and tells us 

that the network is working properly. A small subset of the logs is displayed in Table 5. We can see the 

console node is receiving all the outputs from the other two nodes and hence we can conclude that the 

network is working properly. 

Table 5. Console log. 

CAN DataOUT 

ID Data 

1300 66 

1200 154 

1100 24 

 

In the results discussed in this section, we can see how we first tested the Acceleration and Brake unit, and 

the Motor unit in software to check for proper working. The testing used pseudo values for acceleration and 
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braking and showed them being relayed onto the simulated network. This showed that the models used to 

model the acceleration and brake unit were outputting information as we designed and with the correct id.  

The motor testing provided us with the result that the model that we designed is correctly receiving 

information from a simulated network and is then computing and sending data back to the network. After 

the nodes are tested individually and in the complete model we test on hardware. The final testing on the 

hardware with all the components connected in a network agreed with our results from the software 

simulation. We can then reasonably be confident that our method and model of simulating a CAN port can 

be used to rigorously test nodes individually and be certain that they will work in a larger hardware setup. 

The logs for the software simulation can allow for the establishment of a temporal connection between 

messages in the log as each of the nodes is simulated as a complete coupled model and therefore the logs 

follow a global time showing causation more simply. In hardware, each of the nodes is an independent 

coupled model on its own with its own local time for the logs. This makes it impossible to use the logs to 

establish causation between events happening in one log and the events occurring in another.  

These discrepancies however do not affect our results significantly. Although we cannot establish a 

temporal connection between two logs we can, however, compare the trends shown in both logs and use 

them to confirm or deny our proposition. In our results, we found despite the smaller log files and different 

log entry times that the two simulations in software and hardware follow the same pattern shown in the 

graphs for the speed. The same pattern allows us to conclude that the models are behaving similarly in both 

scenarios and our methodology is sound.  

The motor model iteratively computes the speed by considering the acceleration, braking, and drag force 

on the vehicle. The model can be improved by adding the effect of gears on top speed by changing the 

coefficients of the model. In the same vein, a more accurate equation for the drag force and its coefficients 

can more closely model a vehicle in motion 

5 CONCLUSION 

In this paper, we defined a CAN controller using DEVS formalism in software and then simulated the CAN 

controller on RT-DEVS. The models were implemented on NUCLEO-F207Z boards running Mbed and 

CADMIUM. Implementing the CAN bus now allows us to simulate boards independently and still allow 

communication between the boards on actual hardware. The results show us that we can use DEVS and 

RT-DEVS to accurately model a CAN port and this allows us to independently model and test nodes in 

software before implementation in hardware. The confirmation of the results in hardware opens a viable 

alternative method to designing and testing systems that use a CAN network for communication.  

The method introduced here can be generalized and be applied to other scenarios. The CAN port was kept 

generic to allow it to be used in any application. The CAN port can be reconfigured, and different data types 

sent over the CAN port provided an appropriate converter to CAN frame is modeled and connected between 

the application and CAN port. Other higher layer protocols can also be used using this methodology by 

using appropriate models to send data to the CAN port. 

We have demonstrated the CAN port can send, receive, or do both on nodes with our testing and that this 

functionality can implement many different scenarios. As an example, the vehicle model can be replaced 

with a building model. In this model the console can turn into a display unit, the acceleration and brake unit 

can be converted to sensors reporting environmental data to a control unit that receives and then sends data 

back to the network to actuators on the CAN network. We can also simulate a higher layer protocol like 

CANopen. 

The models can be further improved by solving some issues. The current method of polling the line prevents 

the model from proceeding and makes the other model dependent on the input from an external source to 
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proceed with their simulation. Using an interrupt-based model that uses interrupt signals from the internal 

registers can allow the rest of the models on a node to proceed with their simulation and not be reliant on 

receiving a message from the node. Implementing a higher layer protocol like CANopen using this 

methodology and testing will allow further confidence to be built in the use of RT-DEVS for testing and 

implementation purposes. Furthermore, it will open more applications that rely on CANopen to be designed 

and tested using this methodology. In our testing, we found no significant deviation from simulation in 

software and testing on the hardware of our example of a car motor, acceleration, and braking system. 
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